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Steady-state motion of a bubble in the shape of an ellipsoid of revolution has been studied 
[1, 2]. Steady-state motion and small oscillations of an ellipsoid of revolution around the 
equilibrium state were studied with the help of Lagrangian equations [3]. In this paper, 
possible equilibrium shapes of a bubble in the form of a triaxial ellipsoid are studied. The 
dependence of the pressure difference at the stagnation point and ~dthin the gas bubble on 
deformation is determined for steady-state motion. The stability of the equilibrium shape 
with respect to small perturbations of the axes of the ellipsoid is investigated through anal- 
ysis of potential energy in the neighborhood of the extrernum. 

1. L a g r a n g i a n  and Routh  F u n c t i o n s .  A gas  bubble m o v e s  in an i d e a l  f lu id  which  i s  a t  r e s t  a t  in f in i ty .  
It is assumed the pressure p of the gas within the bubble is constant and is a function of bubble volume, 

p(V). Then the Lagrangian function determining the dynamics of the bubble is 

L = T - -  ~ S - - p ~ V  + f p (V )  dV  

Here, ~ is the coefficient of surface tension of the fluid; S and V are the surface area and volume of 

the bubble. The kinetic energy T of the fluid is a quadratic form in generalized velocities, 

i i . 

z i 1 

H e r e  v i s  the  v e l o c i t y  of the  t r a n s l a t i o n a l  d i s p l a c e m e n t  of the  bubble  (i t  i s  a s s u m e d  fo r  s i m p l i c i t y  
t ha t  only one componen t  of the  v e l o c i t y  v e c t o r  i s  d i f f e r e n t  f r o m  ze ro ) .  The a p p a r e n t  m a s s e s  M, Mi,  and  
Mij are functions of the generalized coordinates qi determining the volume and shape of the bubble. 

Because of the homogeneity of the space in the dynamic system, the law of conservation of momentum 

P = OY / Ov (1.1) 

is valid. The equations of motion for a bubble with a given momentum P can be obtained from the Routh 
function [4] 

R = L - -  v P  (1.2) 

The velocity v should be expressed through the momentum P and the generalized velocities qi by 
means of Eq. (1.1) for the conservation of momentum. 

The Routh function (1.2) is a Lagrangiau function for the reduced system with local generalized co- 
ordinates qi" 

2. Potential Energy of the System. The second term appearing in the Routh function (1.2), taken 
with the opposite sign, does not depend on the generalized velocities qi, is the Routh potential, and plays 
the part of the potential energy for the reduced system. 

The potential energy U is 

U = p 2 / 2 M  + , ~ S  + p ~ V - - J ' p ( V )  d V  (2.1) 
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Fig. 1 

Following [4], we designate s teady-s ta te  motion as motion 
for which the coordinates determining the volume and shape of 
the bubble (local coordinates) remain constant. According to 
this definition, the motion of a bubble in a homogeneous 
flow of fluid is s teady-s ta te  motion. Since s teady-sta te  motion 
corresponds  to the equilibrium position of a reduced sys tem 
with the L a g r a n ~ a n  (1.2), a neces sa ry  condition for the exis-  
tence of such motion is expressed  by equating the f i rs t  variat ion 
of the potential energy to zero,  6U = 0. If the sys tem has an in-  
finite number  of degrees of freedom, the neces sa ry  condition 
is written as 

OU / Oqi = 0 

If the volume V is selected as one of the general ized coordinates,  this condition yields an exact r e -  
lati o n 

(Po - -  P~) Vo = 2/a (~So - -  1/2Mv}o (2.2) 

for the derivation of which it is neces sa ry  to consider  that M ~V,  S~V2/3. 

Here and in the following, the subscr ipt  0 denotes that the corresponding quantity r e fe r s  to s teady-  
state motion. 

A sufficient condition for  the stability of s teady-s ta te  motion is the posi t ive-defini teness of the sec-  
ond variat ion 6U > 0, or  the quadrat ic  form of the second differential of the potential energy must  be posi-  
t ive-definite for  a sys tem with a finite number of degrees  of f reedom. 

The functions M and S appearing in Eq. (2.1) can be expressed  through dimensionless  quantities m 
and s which are  independent of bubble volume, 

M = 4/3 npI3m, S = 2 / ~ P s ,  V = 4/3~la (2.3) 

Here l is the radius of a sphere having a volume equal to the volume of the bubble. 

Let /0 and m 0 be values of I and m in the equilibrium state; v0, the velocity of steady-statemotion of 

the bubble; and P0, the gas pressure within the bubble in the equilibrium state when the bubble volume is 

V 0. Let z be a dimensionless parameter which determines the deviation of bubble volume from the equi- 

librium value: 

l = lo (l ~- z) (2.4) 

Substituting Eqs. (2.3) and (2.4) in Eq. (2.1) and omitting the constant dimensional factor  4/3wp/03v02 , 
one can then obtain an express ion for the potential energy in t e rms  of the dimensionless  functions 

2 "o2 3 (2 

PV 2/~176 p~21o po21o 
6 P ~Ico - -  , ~ o  = 6 

_ Y_zo d_2_P } 
'~ ~" po d V  V=Vo 

Equation (2.5) for U is writ ten with an accuracy  to second order  in small  z, which is necessa ry  for  
the investigation of stability. In the case of a polytropic process ,  7 agrees  with the index of polytropy. 

The functions m and s can be calculated explicitly for  a bubble in the shape of a tr iaxial  ellipsoid 
with semiaxes lx, ly,  and lz,  the velocity v of which is directed parallel  to the semiaxis  1 z. A triaxial  
ellipsoid can be assigned by means of the pa rame te r  l, which defines the volume, and two other  dimension-  
less  p a r a m e t e r s  x and y, 

l x =  V~a l, ly = ~fb l, lz = ] / ' c l  (2.6) 
a---- ( t - - x )  - ~ / , ( l - y ) ' / ' ,  b = ( l - - x ) V ,  ( l - - y ) - ' f '  
c = ( 1  - -  x ) ' l ,  ( t  - -  y)'/, 

The functions re(x, y) and s(x, y) a re  [5] 
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m --  I / (2 - -  J) ,  s---- 3 ( c ~ - ~ / ~ f c ) -  (2 .7)  

d~, (t -- xy~ ~) d~, 

0 {I 

For  an ax i symmet r i c  ellipsoid, x = y ;  the functions I and r and, consequently, m and s also, and the 
potential energy U are  expressed  in t e rms  of e lementary  functions 

( x , x ) = x  H - ~  ln - -  

Tn the case of a smal l  deformation of the ax i symmet r ic  ellipsoid (x << 1) 

ra (x, x) = 1/2 ( l  + a/5 x d- sl/i75 x~), s (x, x) = 6 (t  + 2/4~ x 2) (2 .9 )  

3_~. Equilibrium Conditions. Equation (2.4) in conjunction with Eqs. (2.5) and (2.6) determines  the de- 
pendence of potential energy u(X, y, z) on the parameters of a triaxial ellipsoid. Taking the parameters 

x, y, and z as generalized coordinates, one can obtain equations defining steady-state motion 

aU/0x~-- 0, aU/dy---- 0, aU/0z=0 for z----0 (3.1) 

The first two equations determine the equilibrium shape as a function of the Weber number. Elim- 

inating the Weber number W from these equations, one can find a curve determining a series of equilibrium 

shapes: 

as Om as am = 0  (3.2) 
ax ay ay ax 

Equation (3.2) determines  a se r ies  of axisyrnmetr ic  equilibrium shapes when x = y. Numerical  anal-  
ysis  of Eq. (3.2) shows that there are  no other equilibrium shapes in addition to this ser ies .  

For  an ax i symmet r ic  se r i e s  of ellipsoids, Eqs. (3.1) make it possible to determine the dependence 
of the Weber number  W and of ATr =~0 - 7r~ on the degree of deformation of the ellipsoid. Since for x =y 
the part ial  der ivat ives  with respec t  to x and y a re  half the total derivative with respect  to x of the c o r r e -  
sponding functions, these dependences can be determined with the help of Eq. (2.8) f rom 

ds / dm 2 l 
W =  2 ~  --~-, A n = - 2 - S _ . T m W  (3.3) 

The f i rs t  relation has been determined [1-3] (curve 1, Fig. 1). The curve for  the second dependence 
on the degree of deformation of the ell ipsoid X = l x / l z  is given by curve 2, Fig. I [3A~00]. 

There is in te res t  in the relation 3Av' = 6 (P0-P*) l/cz (p, is the p ressu re  at the stagnation point). 
From the Bernoulli integral it follows that A~, =A~ - I/2W. A curve for this relation is also shown in Fig. 1 

(curve 3). The zero of the function Av, at the point X =4.83 physically means that the curvature of the bub- 

ble surface at a point on the axis of rotation goes to zero and that the surface of the bubble at this point 
becomes concave for larger X. 

The corresponding two-dimensional  problem has been considered [6]. The relat ions W(X) and ATr' (X) 
found in that work on the basis  of an exact  numerical  solution are  in qualitative agreement  with Eqs. (3.3). 

-Zg 
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Fig. 2 

F o r  small  deformations (W << 1), expansions with respec t  to small 
x or  small W in Eqs. (3.3) can be found with the help of Eqs. (2.9), 

W = 32/g x (1 ~- s/10~ x) (3 .4 )  
A ~  = 4 - - t / 4 W - 9 / 3 ~ 0 W  2 

4. Stability Conditions. By analyzing Eq. (2.5) one can determine 
a cr i ter ion for the Stability of equilibrium shape with respec t  to small,  
not necessa r i ly  ax isymmetr ic ,  perturbat ions of bubble shape and vol- 
ume. These perturbations a re  specified by the deviations x, y, and z 
f rom the equilibrium state. 

Fo r  a stable equilibriun{ state, it is sufficient that the potential 
energy U at the equilibrium point reach  a minimum value, or  
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O2U 02U O'-U ] 
2U 02t" I Or"- Ox 0~/ Or Oz 

a'-c > 0  " O r  2 ~ Ox@ t.." a2g o,-cr ~ > 0  (4.1) 
a'-u o2u i J > 0, o~ o~, o~: 

Of- I 0%" a2u a2u 
Ox Oz Oy Oz 0.: 2 

In expanding the de te rminants ,  one can use the fact  that x =y, z = 0 in the equi l ibr ium state,  

02U O2U 02U 02~ r I d OU 02U 02U 1 d2ff 
O.,X =~.v"- ' a r a b - -  @ a ~ = T d - Y  O---Y" ox '--V- + o z a ~  = 2 d~ 2 

The conditions (4.l) lead to 

o:u > O, ( x u  a w  "~ ~,c, a , . - '  ~ - - ~ ]  --27r~2 > 0 (4.2) 

i a.,, ~. a,,, @ a.='- oh,2 ~Tx --~:] ] >o 

The f i r s t  hvo conditions a r e  equivalent to the following: 

d2U_ ( 02 a2 ) (4.3) 
~l~.~ 7 0 ,  U > O  O~ dx a q 

When the conditions (4.3) a re  taken into considerat ion,  the l as t  condition in (4.2) takes  the fo rm 

a~rf a2U I d OCt ~2 (4.4) 

Simultaneous sa t is fac t ion of conditions (4.3) and (4.4) is  equivalent  to sat isfact ion of conditions (4.2). 

The calculat ions a re  cons iderably  s impl i f ied if one uses  the following re la t ions  at  the point x =y: 

(as 02 ) , d2 
Ox2 0x0~1 I = - - C - ~ z 2  I ( x ' x )  (4.5) (02 o -~ ) t i d2r 

ax 2 O:cOy T = 2 i t - - x )  ~- 4 Ox~ 

These  re la t ions  can be proven  by d i rec t  different ia t ion of the functions inside the in tegra l  sign in 
(2.7). The f i r s t  re la t ion in (4.5) can be proven on the basis  that  I and all par t ia l  de r iva t ives  of I with r e -  
spect  to x and y a re  homogeneous functions of a,  b, and c. 

The lef t  s ides  of inequal i t ies  (4.3) and (4.4) a r e  de te rmined  f rom Eqs. (2.5)-(2.7), and the p rob lem is  
reduced to different ia t ion of the e l e m e n t a r y  functions (2.8) when Eqs. (4.5) a r e  taken into account.  

The f i r s t  inequali ty in (4.3) is  sa t i s f ied  for  all values  of the Weber  number  W and denotes a condition 
of s tabi l i ty  for  s t eady - s t a t e  motion of an el l ipsoid of rotat ion with r e spec t  to a x i s y m m e t r i c  per tu rba t ions  
at  constant volume.  This  r e su l t  was obtained prev ious ly  [3]. 

Calculation shows that the second condition in (4.3) is  a lso always sat isf ied.  Satisfaction of both 
conditions in (4.3) means  that any s t eady- s t a t e  motion is  s table  with r e s p e c t  to pe r tu rba t ions  of the axes  
of a t r iaxta l  e l l ipsoid at  constant  volume.  

The l a s t  inequali ty (4 .4 ) i s  a condition for  the s tabi l i ty  of s t eady- s t a t e  motion with r e s p e c t  to smal l  
pe r tu rba t ions  of volume and a x i s y m m e t r i c  per turba t ion  of shape. The condition for  s tabi l i ty  with r e spec t  
to smal l  per turba t ion  of volume only reduces  to the inequali ty 

O 2 U/Oz 2 > 0  (4.6) 

With the help of Eqs. (2.5)-(2.8), the conditions (4.4) and (4.6) a re  t r a n s f o r m e d  to 

l > 4 / 1 _ _  A~ (4.7) - T / - -  An, n~ / 
2 1 5 dnT, \2 / d2U 

/ ~ = T ~ - ~ w ,  / = / ~ + w ! ~ - T s s )  dx2 

These conditions de te rmine  a cr i t ica l  value for  the fluid p r e s s u r e  at infinity below which s table  
s t eady - s t a t e  mot ion does not exist .  F r o m  Eqs.  (2.7), (2.8), (3.4), and (4.7), one can find expansions of the 
functions f and f l  in t e r m s  of smal l  W with an accu racy  to t e r m s  of o rde r  W 2, 

/1  = 4//3 - -  1/2 W - -  51,/610 W 2, / = 4 /3  - -  1/2 W -~ 3/80 W 2 (4.8) 

The re la t ions  3fl(W), 3f(W),  and Am(W) a re  shown in Fig. 2 (curves  1-3, respec t ive ly) .  

626 



5. Model of a Spherical  Bubble. The conditions for  equi l ibr ium and s tabi l i ty  of s t eady - s t a t e  motion 
can be analyzed with the help of a spher ica l  model .  In this  case ,  the bubble has only one degree  of f reedom 
de te rmin ing  the volume of the bubble. One should se t  s = 6 and m = 1 / 2  in the appropr i a t e  equation (2.5) 
for U. 

The potential function U(z) depends only on z. 

The equilibrium condition determines the relation 

A~ = 4 - -  1/4 W (5.1) 

The stabi l i ty  condition dZU/dz 2 > 0 takes  the f o r m  

n~>+]--hn, ]=4/a--l12W (5.2) 

A compar i son  of Eqs.  (5.1) and (3.4) and of Eqs. (5.2) and (4.8) shows that the spher ica l  model  gives 
the c o r r e c t  a sympto t ic  dependence of A~(W) and f (W) for  smal l  Weber  numbers .  When W= 0, Eqs. (5.i) 
and (5.2) give exac t  r e la t ions  for  s table equi l ibr ium of a spher ica l  bubble acted on by the fo rces  of gas and 
fluid p r e s s u r e  and by sur face- tens ion  force ,  

P0 = P~ = 2--2.z , ,  l >  ~p~ (-~- --  2) 

1. 

2. 

3. 
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