STABILITY OF GAS~-BUBBLE EQUILIBRIUM SHAPE
IN UNIFORM- FLOW OF AN IDEAL FLUID

A. G. Petrov UDC 532.529

Steady-state motion of a bubble in the shape of an ellipsoid of revolution has been studied
{1, 2]. Steady-state motion and small oscillations of an ellipsoid of revolution around the
equilibrium state were studied with the help of Lagrangian equations {3]. In this paper,
possible equilibrium shapes of a bubble in the form of a triaxial ellipsoid are studied. The
dependence of the pressure difference at the stagnation point and within the gas bubble on
deformation is determined for steady-state motion. The stability of the equilibrium shape
with respect to small perturbations of the axes of the ellipsoid is investigated through anal-
ysis of potential energy in the neighborhood of the extremum.

1. Lagrangian and Routh Functions. A gas bubble moves in an ideal fluid which is at rest at infinity.
It is assumed the pressure p of the gas within the bubble is constant and is a function of bubble volume,
p{V). Then the Lagrangian function determining the dynamics of the bubble is

L=T—0S—psV +{pdv

Here, g is the coefficient of surface tension of the fluid; S and V are the surface area and volume of
the bubble. The kinetic energy T of the fluid is a quadratic form in generalized velocities,

T= 5 Mt 0 Mg, + D D+ M, 45
7 i 2

Here v is the velocity of the translational displacement of the bubble (it is assumed for simplicity
that only one component of the velocity vector is different from zero). The apparent masses M, M;, and
Mjj are functions of the generalized coordinates g; determining the volume and shape of the bubble.

Because of the homogeneity of the space in the dynamic system, the law of conservation of momentum

P =0T /0dv (1.1)

is valid. The equations of motion for a bubble with a given momentum P can be obtained from the Routh
function [4]

R=L~—-vp (1.2)

The velocity v should be expressed through the momentum P and the generalized velocities g; by
means of Eq. (1.1) for the conservation of momentum.

The Routh function {1.2) isa Lagrangian function for the reduced system with local generalized co-
ordinates g;.

2. Potential Energy of the System. The second term appearing in the Routh function (1.2), taken
with the opposite sign, does not depend on the generalized velocities g;, is the Routh potential, and plays
the part of the potential energy for the reduced system.

The potential energy Uis
U=P/2M+06S + pV—§p(V)ydv {2.1)
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yq 7 T — Following [4], we designhate steady-state motion as motion
‘ for which the coordinates determining the volume and shape of

7. , the bubble (local coordinates) remain constant. According to

' s this definition, the motion of a bubble in a homogeneous

2 : .
5 | : flow of fluid is steady-state motion. Since steady-state motion
' corresponds to the equilibrium position of a reduced system

\ : : } with the Lagrangian {1.2), a necessary condition for the exis-
4  ee—— tence of such motion is expressed by equating the first variation
} + x¢ of the potential energy to zero, 8U=0. If the system has an in-
J

] finite number of degrees of freedom, the necessary condition
Fig. 1 is written as

aU 1 8g; = 0

If the volume V is selected as one of the generalized coordinates, this condition yields an exact re~
lation

(Po — p=) Vo = */308, — Yo Mv?, (2.2)
for the derivation of which it is necessary to consider that M~V, S~ V2/3,

Here and in the following, the subscript 0 denotes that the corresponding quantity refers to steady-
state motion.
A sufficient condition for the stability of steady-state motion is the positive-definiteness of the sec~

ond variation 6U >0, or the quadratic form of the second differential of the potential energy must be posi-
tive-definite for a system with a finite number of degrees of freedom.

The functions M and S appearing in Eq. (2.1) can be expressed through dimensionless quantities m
and s which are independent of bubble volume,
M = Yymplm, S = ¥ mi%s, V =4 nl (2.3)

Here [ is the radius of a sphere having a volume equal to the volume of the bubble.

Let I, and m; be values of I and m in the equilibrium state; v,, the velocity of steady-state motion of
the bubble; and p,, the gas pressure within the bubble in the equilibrium state when the bubble volume is
V,. Letz be a dimensionless parameter which determines the deviation of bubble volume from the equi-
librium value:

I=151+2 (2.4)

Substituting Egs. (2.3) and (2.4) in Eq. (2.1) and omitting the constant dimensional factor %mplvy?,
one can then obtain an expression for the potential energy in terms of the dimensionless functions

U=(1—3z+ 623 ;’:;’: - V;—{(i 1422 4 2%) 5 + 7l (32 + 322) — 7, <3z + _g’_(g — 3y) zz)} (2.5)
. 2opre? _ P2l pe2l
W=, me=—=, mp=22k
. _Yodp
T= "% |v=v,

Equation (2.5) for U is written with an accuracy to second order in small z, which is necessary for
the investigation of stability. In the case of a polytropic process, v agrees with the index of polytropy.

The functions m and s can be calculated explicitly for a bubble in the shape of a triaxial ellipsoid
with semiaxes Iy, Ly, and 1,, the velocity v of which is directed parallel to the semiaxis [,. A triaxial
ellipsoid can be assigned by means of the parameter [, which defines the volume, and two other dimension-

less parameters x and y,

L=Vall,=VbLl=Vcl (2.6)
a=1—a)"(1—yh, b=({1—azy (1—y*
e=(1—a (1 —y*

The functions m(x, y) and s(x, y) are [5]
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m=I/2~J),s=3@c+e/V 7 (2.7

o0

1
) P S g =T
dVEtNE+FME+N YV l—20) (1 —yid)
TFor an axisymmetric ellipsoid, x=y; the functions I and ¢, and, consequently, m and s also, and the
potential energy U are expressed in terms of elementary functions

I(x,x)=—i—(1_]/ r‘:x arcbngix) (2.8)

. 1—z, 1+Va
Q(x,z) =z + Vs in ——-—-—1_1/;
In the case of a small deformation of the axisymmetric ellipsoid (x « 1)
mz, z)="Yy(1 +3%5 z+ My ), sz, 2)=6(1+%s2") {2.9)

3. Equilibrium Conditions. Equation (2.4) in conjunction with Egs. (2.5) and {(2.6) determines the de~
pendence of potential energy Ulx, y, z) on the parameters of a triaxial ellipsoid. Taking the parameters
X, y, and z as generalized coordinates, one can obtain equations defining steady-state motion

0U/0x=0, aU/dy=0, dU/8z =10 for z=20 (8.1

The first two equations determine the equilibrium shape as a function of the Weber number. Elim-
inating the Weber number W from these equations, one can find a curve determining a series of equilibrium
shapes:

ds 8m ds dm
=~ aa =0 (3.2)

Equation (3.2) determines a series of axisymmetric equilibrium shapes when x=y. Numerical anal-

ysis of Eq. (3.2) shows that there are no other equilibrium shapes in addition to this series.

For an axisymmetric series of ellipsoids, Egs. (3.1) make it possible to determine the dependence
of the Weber number W and of Ar=m,— 7, on the degree of deformation of the ellipsoid. Since for x=y
the partial derivatives with respect to x and y are half the total derivative with respect to x of the corre-
sponding functions, these dependences can be determined with the help of Eq. (2.8) from

d d
We=ag [, M=t Louw : (3.3)
The first relation has been determined [1-3] (curve 1, Fig. 1). The curve for the second dependence

on the degree of deformation of the ellipsoid x=14/1, is given by curve 2, Fig. 1 [3Arx(x)].

There is interest in the relation 3AT =6 (p-p«) I/ (p, is the pressure at the stagnation point).
From the Bernoulli integral it follows that Ar'=Ag — 1/ZW. A curve for this relation is also shown in Fig. 1
(curve 3). The zero of the function Arx! at the point X =4.83 physically means that the curvature of the bub-
ble surface at a point on the axis of rotation goes to zero and that the surface of the bubble at this point
becomes concave for larger x.

The corresponding two-dimensional problem has been considered [6]. The relations W(x) and Ar! (3)
found in that work on the basis of an exact numerical solution are in qualitative agreement with Egs. (3.3).

4 ) For small deformations (W « 1), expansions with respect to small
’\\\JJ x or small W in Egs. (3.3) can be found with the help of Egs. {2.9),
| W =2y 2 (1 + 8195 7) (3.4)
z N\ \ : Am =4 — 1, W — gy, W
NI 4. Stability Conditions. By analyzing Eq. {2.5) one can determine
i ! a criterion for the stability of equilibrium shape with respect to small,
g \1 not necessarily axisymmetric, perturbations of bubble shape and vol-
N | ume. These perturbations are specified by the deviations x, y, and z
; | from the equilibrium state.
2 | Lo _
7 Z J For a stable equilibrium state, it is sufficient that the potential
Fig. 2 energy U at the equilibrium point reach a minimum value, or
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o oty 92U

20 0r2 drody drd:
FLin drt o dy 20 U 27 (4.1)
4 0. LS N [ .
s > o RU >0, drdy Oy 0dyo: >0
ar oy ay? o2 RU 82U

dxrdz Jydz 022
In expanding the determinants, one can use the fact that x=y, z=0 in the equilibrium state,

ol 82U oL 02U t 4 auv oU | U 1 @&U
2 dx?

o2 By ' 0rds  oyos 2 de 0z ' oxr ' dzdy

The conditions {4.1) lead to

ar 2l o a2

G>0 (G ) Ga >0 4.2)
[ 02 2 "o A7 d U \2
kw‘ﬁmﬁkﬁ?ﬁ“h??”>u

The first two conditions are equivalent to the following:

a2 ( 42

>0, & )U>o (4.3)

a2t Te dy
When the conditions (4.3) are taken into consideration, the last condition in (4.2) takes the form
ﬂf__dﬂu( d oU )z>0 (4.4

22 dx? E'}E—
Simultaneous satisfaction of conditions (4.3) and (4.4) is equivalent to satisfaction of conditions (4.2).

The calculations are considerably simplified if one uses the following relations at the point x=y:

02 a2 1 a2
(o — o) [ = e 1 59 (4.5)
I Y 1 dg (z, 2)
<dm2 8758‘1/)([)#2(1——1) _}_T A2

These relations can be proven by direct differentiation of the functions inside the integral sign in
(2.7). The first relation in (4.5) can be proven on the basis that I and all partial derivatives of I with re-
spect to x and y are homogeneous functions of a, b, and c.

The left sides of inequalities (4.3) and (4.4) are determined from Egs. (2.5)-(2.7), and the problem is
reduced to differentiation of the elementary functions (2.8) when Egs. (4.5) are taken into account.

The first inequality in (4.3) is satisfied for all values of the Weber number W and denotes a condition
of stahility for steady-state motion of an ellipsoid of rotation with respect to axisymmetric perturbations
at constant volume. This result was obtained previously [3].

Calculation shows that the second condition in (4.3) is also always satisfied. Satisfaction of both
conditions in (4.3) means that any steady-state motion is stable with respect to perturbations of the axes
of a triaxial ellipsoid at constant volume.

The last inequality (4.4) is a condition for the stability of steady~state motion with respect to small
perturbations of volume and axisymmetric perturbation of shape. The condition for stability with respect
to small perturbation of volume only reduces to the inequality

PU/82>0 (4.6)
With the help of Egs. (2.5)-(2.8), the conditions (4.4) and (4.6) are transformed to
o>/ — Ary nx>+f1~—An’ 4.7
h=gs—mW. 1=fi Wl [ G

These conditions determine a critical value for the fluid pressure at infinity below which stable
steady-state motion does not exist. From Egs. (2.7), (2.8), (3.4), and (4.7), one can find expansions of the
functions f and £ in terms of small W with an accuracy to terms of order w2,

fr =Y = Uy W — gy W2, f =35 — Yy WA 5o W? (4.8)

The relations 37,(W), 37(W), and Ar(W) are shown in Fig. 2 (curves 1-3, respectively).
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5. Model of a Spherical Bubble. The conditions for equilibrium and stability of steady-state motion
can be analyzed with the help of a spherical model. In this case, the bubble has only one degree of freedom
determining the volume of the bubble. One should set s=6 and m=1/2 in the appropriate equation (2.5)
for U.

The potential function U(z) depends only on z.

The equilibrium condition determines the relation
An =4 Y, W {5.1)

The stability condition d?U/dz? > 0 takes the form
Mo>of B f= s — YW (5.2)

A comparison of Egs. (5.1) and (3.4) and of Egs. (5.2) and (4.8) shows that the spherical model gives
the correct asymptotic dependence of Ar(W) and (W) for small Weber numbers. When W=0, Egs. (5.1)
and (5.2) give exact relations for stable equilibrium of a spherical bubble acted on by the forces of gas and
fluid pressure and by surface-tension force,

Dy = oo:E., i(i__
o =D : Z>Pm 5 2
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